Home > Authors > V. G. Bolti͡anskiĭ > Geometric methods and optimization problems
Geometric methods and optimization problems
This book focuses on three disciplines of applied mathematics: control theory, location science and computational geometry. The authors show how methods and tools from convex geometry in a wider sense can help solve various problems from these disciplines. More precisely they consider mainly the tent method (as an application of a generalized separation theory of convex cones) in nonclassical variational calculus, various median problems in Euclidean and other Minkowski spaces (including a detailed discussion of the Fermat-Torricelli problem) and different types of partitionings of topologically complicated polygonal domains into a minimum number of convex pieces. Figures are used extensively throughout the book and there is also a large collection of exercises. Audience: Graduate students, teachers and researchers.
See on goodreads