Home > Authors > Nicolas Bouleau > Numerical methods for stochastic processes
Numerical methods for stochastic processes
In recent years, random variables and stochastic processes have emerged as important factors in predicting outcomes in virtually every field of applied and social science. Ironically, according to Nicolas Bouleau and Dominique Lepingle, the presence of randomness in the model sometimes leads engineers to accept crude mathematical treatments that produce inaccurate results. The purpose of Numerical Methods for Stochastic Processes is to add greater rigor to numerical treatment of stochastic processes so that they produce results that can be relied upon when making decisions and assessing risks. Based on a postgraduate course given by the authors at Paris 6 University, the text emphasizes simulation methods, which can now be implemented with specialized computer programs. Specifically presented are the Monte Carlo and shift methods, which use an "imitation of randomness" and have a wide...
See on goodreads | librarything