Home > Authors > Zheng Shou > Deep Learning for Action Understanding in Video
Deep Learning for Action Understanding in Video
Action understanding is key to automatically analyzing video content and thus is important for many real-world applications such as autonomous driving car, robot-assisted care, etc. Therefore, in the computer vision field, action understanding has been one of the fundamental research topics. Most conventional methods for action understanding are based on hand-crafted features. Like the recent advances seen in image classification, object detection, image captioning, etc, deep learning has become a popular approach for action understanding in video. However, there remain several important research challenges in developing deep learning based methods for understanding actions. This thesis focuses on the development of effective deep learning methods for solving three major challenges. Action detection at fine granularities in time: Previous work in deep learning based action...