Home > Authors > Zhuo Chen > Single Channel auditory source separation with neural network
Single Channel auditory source separation with neural network
Although distinguishing different sounds in noisy environment is a relative easy task for human, source separation has long been extremely difficult in audio signal processing. The problem is challenging for three reasons: the large variety of sound type, the abundant mixing conditions and the unclear mechanism to distinguish sources, especially for similar sounds. In recent years, the neural network based methods achieved impressive successes in various problems, including the speech enhancement, where the task is to separate the clean speech out of the noise mixture. However, the current deep learning based source separator does not perform well on real recorded noisy speech, and more importantly, is not applicable in a more general source separation scenario such as overlapped speech. In this thesis, we firstly propose extensions for the current mask learning network, for the problem...