Home > Authors > Zheng Wang > Optimal Stopping and Switching Problems with Financial Applications
Optimal Stopping and Switching Problems with Financial Applications
This dissertation studies a collection of problems on trading assets and derivatives over finite and infinite horizons. In the first part, we analyze an optimal switching problem with transaction costs that involves an infinite sequence of trades. The investor's value functions and optimal timing strategies are derived when prices are driven by an exponential Ornstein-Uhlenbeck (XOU) or Cox-Ingersoll-Ross (CIR) process. We compare the findings to the results from the associated optimal double stopping problems and identify the conditions under which the double stopping and switching problems admit the same optimal entry and/or exit timing strategies. Our results show that when prices are driven by a CIR process, optimal strategies for the switching problems are of the classic buy-low-sell-high type. On the other hand, under XOU price dynamics, the investor should refrain from entering...